Contractility and ischemic response of hearts from transgenic mice with altered sarcolemmal K(ATP) channels.
نویسندگان
چکیده
The functional significance of ATP-sensitive K(+) (K(ATP)) channels is controversial. In the present study, transgenic mice expressing a mutant Kir6.2, with reduced ATP sensitivity, were used to examine the role of sarcolemmal K(ATP) in normal cardiac function and after an ischemic or metabolic challenge. We found left ventricular developed pressure (LVDP) was 15-20% higher in hearts from transgenics in the absence of cardiac hypertrophy. beta-Adrenergic stimulation caused a positive inotropic response from nontransgenic hearts that was not observed in transgenic hearts. Decreasing extracellular Ca(2+) decreased LVDP in hearts from nontransgenics but not in those from transgenics. These data suggest an increase in intracellular [Ca(2+)] in transgenic hearts. Additional studies have demonstrated hearts from nontransgenics and transgenics have a similar postischemic LVDP. However, ischemic preconditioning does not improve postischemic recovery in transgenics. Transgenic hearts also demonstrate a poor recovery after metabolic inhibition. These data are consistent with the hypothesis that sarcolemmal K(ATP) channels are required for development of normal myocardial function, and perturbations of K(ATP) channels lead to hearts that respond poorly to ischemic or metabolic challenges.
منابع مشابه
Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current.
Mice with genetic inhibition (AC3-I) of the multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaMKII) have improved cardiomyocyte survival after ischemia. Some K(+) currents are up-regulated in AC3-I hearts, but it is unknown if CaMKII inhibition increases the ATP sensitive K(+) current (I(KATP)) that underlies ischemic preconditioning (IP) and confers resistance to ischemia. We hy...
متن کاملRisk of ventricular proarrhythmia with selective opening of the myocardial sarcolemmal versus mitochondrial ATP-gated potassium channel.
Myocardial ATP-gated potassium channels (K-ATPs) are critical in the intracellular signaling cascade resulting in ischemic preconditioning (IP). Mitochondrial K-ATP channels seem to be responsible for IP, whereas the functions of K-ATP channels in the sarcolemmal membrane are less well understood. The proarrhythmic potential of specific versus nonspecific opening of K-ATP channels has not been ...
متن کاملRemodeling of excitation-contraction coupling in transgenic mice expressing ATP-insensitive sarcolemmal KATP channels.
Reducing the ATP sensitivity of the sarcolemmal ATP-sensitive K(+) (K(ATP)) channel is predicted to lead to active channels in normal metabolic conditions and hence cause shortened ventricular action potentials and reduced myocardial inotropy. We generated transgenic (TG) mice that express an ATP-insensitive K(ATP) channel mutant [Kir6.2(deltaN2-30,K185Q)] under transcriptional control of the a...
متن کاملKnockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics.
Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in cont...
متن کاملKetamine abolishes ischemic preconditioning through inhibition of K(ATP) channels in rabbit hearts.
Although ketamine inhibits ATP-sensitive K (K(ATP)) channels in rat ventricular myocytes and abolishes the cardioprotective effect of ischemic preconditioning in isolated rat hearts and in rabbits in in vivo, no studies to date specifically address the precise mechanism of this prevention of ischemic preconditioning by ketamine. This study investigated the mechanism of the blockade of ischemic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 283 2 شماره
صفحات -
تاریخ انتشار 2002